Peer-to-Peer Netw. Appl.
DOI10.1007/512083-010-0074-2

Sorcery: Overcoming deceptive votes in P2P content

sharing systems

Ennan Zhai - Huiping Sun - Sihan Qing - Zhong Chen

Received: 28 December 2009 / Accepted: 3 June 2010
© Springer Science+Business Media, LLC 2010

Abstract Deceptive voting behaviors of malicious
users are known as the main reason of causing con-
tent pollution in Peer-to-Peer (P2P) content sharing
systems. Due to the nature of P2P overlay network such
as self-organization and anonymity, the existing meth-
ods on identifying deceptive votes are not effective,
especially for collusive attackers. This paper presents
Sorcery, a novel active challenge-response mechanism
based on the notion that one side of interaction with
the dominant information can detect whether the other
side is telling a lie. To make each client obtain the dom-
inant information, our approach introduces the social
network to the P2P content sharing system; therefore,
clients can establish the friend-relationships with the
users who are either acquaintances in reality or those
reliable online friends. Using the confidential voting
histories of friends as own dominant information, the

E. Zhai - H. Sun - S. Qing - Z. Chen
School of Software and Microelectronics, Peking University,
Beijing, China

E. Zhai - H. Sun - S. Qing - Z. Chen
Key Laboratory of Network and Software Security
Assurance, Beijing, China

E. Zhai
e-mail: zhaien@infosec.pku.edu.cn

S. Qing
e-mail: gsihan@ss.pku.edu.cn

Z. Chen
e-mail: chen@ss.pku.edu.cn

H. Sun (X)

Peking University, Room 1530, Science Building 1#,
Beijing, 100871, China

e-mail: sunhp@ss.pku.edu.cn

Published online: 22 June 2010

client challenges target content providers with the over-
lapping votes of both his friends and the target content
provider, thus detecting whether the content provider
is a deceptive user. Moreover, Sorcery provides the
punishment mechanism which can reduce the impact
brought by deceptive voting behaviors, and our work
also discusses some key practical issues. The exper-
imental results illustrate that Sorcery can effectively
overcome the problem of deceptive voting behaviors in
P2P content sharing systems, and work better than the
existing reputation models.

Keywords Peer-to-Peer - Social network -
Deceptive votes - Content pollution -
Challenge-response

1 Introduction

Peer-to-Peer (P2P) content sharing systems, e.g.,
BitTorrent [5], KaZaA [3], eMule [4], etc., have be-
come increasingly popular. However, due to the na-
ture of P2P overlay networks, such as anonymity and
self-organization, the participants have to face some
potential risks involved in the application transactions
without adequate experience and knowledge of other
users. Many studies indicated that P2P content sharing
systems are highly vulnerable to deceptive voting behav-
iors [13,21].

Deceptive voting behaviors 1In a typical deceptive vot-
ing behavior, individual or collusive malicious users
first publish lots of content that may contain in-
valid meta-data or corrupt data; meanwhile they also
download some content from system. Then, they cast

@ Springer



Peer-to-Peer Netw. Appl.

incorrect votes on the content in system to mislead
other users. For example, they cast “positive vote” on
some corrupt content to confuse normal users. Unable
to distinguish authentic content from the corrupt one,
the normal P2P users download the undesirable content
into their folders. Therefore, we say these normal users
are deceived, and we call these malicious users who cast
incorrect votes on the content in P2P content sharing
system as deceivers. As a result, the corrupt content
spreads through the P2P network with an extraordinary
speed, and causes the availability of P2P content shar-
ing system to be low.

Generally, some previous studies on identifying de-
ceptive voting behaviors mainly focused on the reputa-
tion models. However, due to the nature of reputation
models, such as passive aggregation of experiences, the
client is easy to become a victim when encountering
the collusive deceivers or individual tricky deceiver.!
The above situation can be explained based on the
principle of Game theory [17, 18] that the adversaries
in system sit on the dominant position, and the solution
is that we need to achieve the conversion of the dom-
inant position through constructing our own dominant
information. The fundamental insight driving our work
is that social network can help the users construct the
confidential friend-relationships, and we may treat the
confidential information (e.g., content, voting history,
etc.) of friends as the dominant information because the
friend information is owned by the client only. There-
fore, the client can detect whether the content provider
is a deceiver using the overlapping voting histories of
the content of both his friends and the content provider.

Based on the above analysis, this paper introduces
Sorcery, a novel challenge-response mechanism using
social network to construct the dominant information
for clients. The challenge denotes the query about the
votes of some content, and the response denotes the re-
sponse messages to “answer” the challenge (The details
are mentioned in Section 3.2). Sorcery encompasses
three key techniques to detect and punish the deceivers
in P2P content sharing systems:

Social network Sorcery introduces social network into
the P2P content sharing system; therefore, each
client can establish his own friend-relationships.
These friends share their own information (e.g.,
content, votes, etc.) with the client, and the friend
information of the client is confidential to other
peers in the system. Specifically, Alice’s friend

IThe definition of the tricky deceiver can be found in Section 5.3
or [16]

@ Springer

information cannot be seen by any user (except
Alice) in the system.

Challenge-response mechanism Sorcery clients utilize
the overlapping voting histories of both his friends
and the content provider to challenge the latter
actively, and judge whether the other side is a
deceiver or not based on the correctness of his
response. Besides, the client assigns each user in the
system a reliability degree. According to the result
of each challenge-response, the client will adjust the
reliability degree of the other side.

Punishment mechanism Sorcery client ranks each
search result based on the honesty (the reliability
degree) of the target content provider; therefore,
the probability of impact brought by deceivers is
reduced. In other words, because deceivers’ relia-
bility degrees normally should be lower than nor-
mal users’, the content provided by deceivers will
certainly be placed at the end of client’s search
result.

To make Sorcery easier to be adopted into the real-
world system, we discuss the solutions for three issues
which possibly happen in practical application (The
details are mentioned in Section 3.4). In addition, we
also discuss the solutions of Sorcery on fighting against
the Man-In-The-Middle (MITM), Sybil [22], Denial-of-
Service (DoS) and the content integrity attacks.

To evaluate the performance of Sorcery, we conduct
simulation studies with different network, peer, content
and execution models. The evaluation results show that
Sorcery can effectively detect the deceivers in system,
and make the normal users avoid from downloading
the corrupt or malicious content. Throughout the entire
experiments, we assess the various performances of
Sorcery as compared to Credence [10]—one of the most
representative reputation models.

Roadmap The rest of this paper is organized as fol-
lows. The related work will be given in Section 2.
The details of Sorcery are described in Section 3. We
present deeper discussions of incorporating Sorcery
with the schemes against MITM, Sybil, DoS and con-
tent integrity attacks in Section 4. Section 5 shows the
simulation methodology and evaluation results. Finally,
we give our conclusions in Section 6.

2 Related work

Along with the extensive deployment of P2P content
sharing systems, security problems, especially the de-
ceptive votes, have gradually been considered as the
bottleneck of the further development of such systems.



Peer-to-Peer Netw. Appl.

So far, many reputation models have been proposed
to resist the deceptive voting behavior in P2P content
sharing systems. In general, these reputation models
can be grouped into three categories: peer-based rep-
utation models, object-based reputation models and
hybrid reputation models.

Peer-based reputation models In peer-based reputa-
tion models, e.g., EigenTrust [14], PeerTrust [13] and
Scrubber [9], in order to reflect the level of honesty,
each participator is assigned a reputation score by
considering his past behaviors in pairwise transactions.
According to the reputation score, genuine users could
identify deceivers, and then isolate these deceivers from
the system. However, the studies in [10, 41] evaluated
the potential impact of peer-based reputation models,
and implied that these models are insufficient to defend
against the deceptive voting behavior.

Object-based reputation models Among the object-
based reputation models, Credence [10] is the typical
representative of them. In Credence, genuine users
determine the reputation score of object through se-
cure tabulation and management of endorsements from
other users. To reduce the probability of believing the
votes of deceivers, Credence utilizes the statistical cor-
relation to measure the reliability of users’ past votes,
and designs a decentralized flow-based trust compu-
tation to discover trustworthy users. However, a new-
comer without voting history hardly has any capacity of
distinguishing between authentic votes and deceptive
votes.

Hybrid reputation models Aiming at combining the
benefits of both peer-based and object-based reputa-
tion models, several hybrid reputation models, e.g.,
XRep [8], X?>Rep [7] and Extended Scrubber [30], have
been further presented. XRep and X?Rep extend the
work in [27] by additionally computing the reputation
of object with the weights based on the past voting
behavior of peers.

Besides the reputation models, several other de-
ceptive voting behaviors defenses have been proposed
in the context of P2P networks. Micropayment tech-
niques, e.g., MojoNation [2] and PPay [26], can be
utilized to counter the deceptive votes by imposing a
cost on deceivers—to inject corrupt content into the
system they should first commit a certain amount of
resources. Furthermore, the fair exchange protocol [28]
provides the mechanism similar with the micropayment
to eliminate the benefit gained by deceivers in P2P
networking systems.

To the best of our knowledge, none of the previ-
ous work focused on using the challenge-response-like

approach to address the problem of deceptive voting
behaviors in P2P content sharing systems.

3 Sorcery

In a typical P2P content sharing system, clients publish
some content, and each content has a specific title.
Normally, a title has various versions,?> each of which
is shared by a group of providers. Without loss of
generality, this paper defines content item as the specific
version associated with a designated title. Moreover,
the peers who have voted on a specific content item
are called the content item’s content voters. Note that
the content provider may have not voted on some of
his shared content items; also, the content voter may
have removed the content items which were voted by
himself.

Generally, a client issues queries to the system in the
form of keywords. The providers respond by sending
the matched content items back to the client. Here, the
client needs to judge the authenticity of each content
item before attempting to obtain it, since some may
contain malicious or corrupt data. Due to the lack of
reliable evidence for reference, a client usually makes
the downloading decision based on the votes on this
content item.

Sorcery helps the clients judge the authenticity of
votes on the target content items, and reduces the ma-
licious impact brought by the deceivers. Before giving
the design rationale, we first describe the infrastructure
of Sorcery.

Infrastructure of Sorcery Sorcery introduces the social
network to the P2P content sharing system, and thus
each client may establish the friend-relationships with
some users in the system. A Sorcery client needs to
maintain two lists:

— Friend list This list contains the information of
client’s friends (e.g., friends’ content items, votes,
etc).

— Respondent list This list is comprised of the peers
who have ever been challenged by the client. Note
that client’s friend list can not be seen by other
peers. Specifically, as shown in Fig. 1, Bob can
not see Alice’s friend list, and Friendl or Friend?2
also can not see Alice’s friend list. For Friendl or
Friend2, he only knows himself is one of Alice’s
friends.

2The definition of the terms title and version can be found in [29].

@ Springer



Peer-to-Peer Netw. Appl.

Bob
(1] [2] [3]

o
e,
-2
N .

Vote Database

Vote Database

o,

X File X is good.

. File Y is corrupt.

Fig. 1 Friend-relationships. To simplify the description, the File
represents the specific content item, and we denote the content
item X as FileX

Using confidential friend information, client con-
structs the dominant information, which is reflected
during challenge-response (Section 3.2), with respect
to the other peers in the system. Moreover, each peer
need to maintain a vote database to store the peer’s own
votes.

3.1 Social network

Sorcery introduces the social network to the P2P con-
tent sharing systems. In this section, we describe the
design of the social network of Sorcery.

Confidential friend information In Sorcery, each
client has many friends and stores their information
in his own friend list. The friend list of client is
confidential to other peers in the system; therefore,
Sorcery constructs the dominant information for each
client with the confidential friend information. As
shown in Fig. 1, Alice publishes Filel and File6, and
moreover her votes on Filel, Filed, File6, File7 and
File9 are stored in her local vote database. In this
instance, Alice has two friends in her friend list, and
he can see his friends’ information, e.g., content, votes,
etc. But, Bob cannot obtain any information of Alice’s
friends. Moreover, Alice will timely update the infor-
mation of own friend list.

Establishment of friend-relationships Any peer can be
invited by an existing participant in the network, and
thus added into the system; meanwhile the inviter will
become the friend of the newcomer automatically. The
invitation scheme ensures that the client at least owns
one friend in the system. Besides the method of invita-
tion, the client can establish friend-relationships with
the peers who are the real-world acquaintances, or

@ Springer

the online friends recognized in other social networks.
For Sorcery, the friend-relationship is symmetric, and
a peer needs to send a request to the other peer for
adding himself as a friend, and then the friend relation-
ship can be established after the other side’s agreement.
The fundamental reason of utilizing the friends’ infor-
mation is that they are much more trustworthy than the
anonymous peers in the system; however, the client’s
friends may be malicious or compromised, thus we will
present a mechanism to address this practical issue, in
Section 3.4.2.

Effectiveness Due to introducing social network to
the P2P content sharing system, Sorcery can address
the “cold start” problem. This problem means, when a
newly incoming user without any voting history joins in
the system, he can easily be deceived due to the lack
of enough experiences of interactions with others. The
studies in [16, 21] indicated that the existing reputa-
tion models cannot completely address the “cold start”
problem. However, in Sorcery, once joining in the sys-
tem, the newcomer first establish his friend-relationship
quickly using the social network, and collect the votes
from his friends. Specifically, these “shortcut” votes
can be treated as the newcomer’s initial local voting
history; thus, we can say the newcomer quickly obtains
the experiences as a mature participant in the system.

3.2 Challenge-response mechanism

In this section, we describe the details of challenge-
response mechanism. Besides the friend list, each client
also maintains a respondent list which stores the reli-
ability degrees of the response peers who have been
challenged by the client. Based on honesty of the re-
sponse peer, the client computes the reliability degree
with respect to the response peer (The calculation of
reliability degree will be given in Section 3.3).

After the client issues a search with some keywords,
the system returns with the matched content items, and
ranks the search results in descending order based on
the reliability degrees of the providers. If the target
content item is owned by the client’s friends, he can
download the content item from his friends directly.
However, in the most cases, the client’s friends do
not have the target content item. Therefore, the client
should choose some of target content providers, based
on their orders, to perform challenge-response. To
elaborate the process of challenge-response clearly, we
define {Vote;}, as the set of overlapping votes of the
client’s friends and the provider j, where n denotes the
size of the set of overlapping votes, and Vote; denotes
the vote of the provider j on the content item i. Then,



Peer-to-Peer Netw. Appl.

we define {C;}i_, as the set of content items associ-
ated with the elements of {Votej; ) ,. The element of
{Ci}L,, Ci, denotes the content item associated with the
Vote ;. The process of challenge-response is as follows:

— Step 1—Challenge The client first generates the
challenge message which is comprised of the queries
for some content items. Here, the query denotes the
voting request on a specific content item C;. Mean-
while, the client inserts the query for the target con-
tent item into the challenge message randomly for
confusing the target content provider. Note that the
reason that we do not use the queries for all the ele-
ments of {C;}/L, is to avoid the target provider from
knowing the details of {Vote;; }'_, and judging the
client’s target content item next time. Afterwards,
the challenge message is sent to the target content
provider. In a similar way, the client also generates
the challenge message to challenge other providers
of the target content item.

— Step 2—Response After receiving the challenge
message, the provider should respond the client
with the response message which is comprised of
local votes for the queries in the challenge message.
These votes contain the provider j’s votes on each
C; and the target content item. Similarly, other
providers also need to respond the challenges in the
same way.

When the client receives the responses, he may esti-
mate whether to believe each response peer’s vote on
the target content item based on #—the rate of each
response peer’s correct answers. This rate can be set
according to the different requirements of applications.
Normally, we think ¥ < 0.5 indicates weak or no cor-
rectness. Due to the feature of utilizing the correctness
of response, in practical applications, Sorcery may be
threaten by the target deceivers who falsely vote on
the popular content items and vote correctly on other
normal content items. In fact, the above threat will not
harm Sorcery. Because Sorcery client first examines
whether his friends own or have voted on the popular
content item (target content item), we believe that,
normally, the client’s friends may have downloaded or
voted on the popular content item. Therefore, the client
could obtain directly the popular content item or the
associated votes from his friends before challenging the
providers of target content item.

Example To elaborate the challenge-response mech-
anism more clearly, we describe the whole process
with the instance in Fig. 2. In this instance, Alice is-
sues a search for File3. Because Alice’s friends do not
have File3, Alice performs the challenge-response to
some providers of File3 according to their orders. As
shown in Fig. 2, we assume that Bob and Eve are
the top2 providers of File3 in Alice’s ranking result.

ChallengeMessage

Step 1

(File5,?),(File3,?),(File2,?)

Friend list of Alice

e

Bob

1] [2][3] 5]

Friendl || Friend2

Alice

ChallengeMessage

1] [g || O 2

(File5, -1), (File3, 1), (File2, +1)

Step 2

[1] [e]

RISl

&
N

B ¥

Friend3

Friend4

3 3

4 ‘A
| T

i o

1] (2][5] || [4] [¢]

hallengeMessage

(File3,?),(File8,?),(File2,?)

Eve
[2[3] 5] [7]

; o
4 A
P on
bt R

\

Blg] I®

ChallengeMessage

Step 2

(File3,+1),(File8, +1),(File2,+1)

File X is good.

. File Y is corrupt.

Fig. 2 Challenge-response mechanism. To simplify the description of instance, the File represents the specific content item, and we

denote the content item X as File X

@ Springer



Peer-to-Peer Netw. Appl.

Therefore, Alice performs the challenge-response to
them as follows:

— Step 1—Challenge Alice chooses the queries for
File2 and File5 to generate the challenge message,
since Alice’s friends have the votes on the two con-
tent items. Then, Sorcery client inserts the query
for File3 into the challenge message randomly, and
sends to Bob; likewise, Alice also generates the
challenge message to challenge Eve.

— Step 2—Response After receiving the challenge
message, Bob should “answer” the Alice’s chal-
lenge with his own votes on File2, File3 and File5,
and then returns the response message to Alice as
Fig. 2 shown. Similarly, Eve also needs to respond
the challenge of Alice in the same way.

After Alice receives the responses, the challenge-
response mechanism will tell Alice whether to believe
the votes of Bob and Eve on File3. However, in some
practical cases, there are possibly two issues as follows:

1. How to handle the peers challenged by the client
do not provide responses?

2. How to handle the situation that there are no over-
lapping voting histories of both client’s friends and
target content providers?

Answering the first issue For the peers challenged
by the client, if they do not provide responses in a
certain time internal,® clients will choose to treat them
as the deceivers. Although some users cannot provide
responses due to network problems, we find the above
scheme is reasonable according to our experimental
results. The experimental results shown in Section 5
prove this solution provides an interested incentive
mechanism for Sorcery clients.

Answering the second issue For the second problem,
we utilize the measurement results of real-world P2P
content sharing system to design solution. We will dis-
cuss the details of this solution in Section 3.4.1.

3.3 Punishment mechanism for deceivers

In order to reduce the possibility of impact brought
by deceivers, Sorcery proposes a severe punishment
mechanism to the client for computing the reliabil-
ity degrees of response peers. Using the punishment
mechanism, the client i computes the reliability degree,

3The time internal should be set based on the concrete require-
ment of application.

@ Springer

RD;;, with respect to the response peer jaccording to
each judgemental result for the peer j as follows:

max(—1, RDy — pn®) if jis a deceiver

RD; i =
0 min(1, RD;¢; +r)

otherwise
1)
where

n  The number of peer j’s response being judged as
deceptive behavior.

p The penalty factor given to the peer j.

r  The recompense factor given to the peer j.

In Eq. 1, if a deceptive peer is detected, his reliability
degree will be decreased quickly. Sorcery allows the
peers recover their reliability degrees by responding
genuinely. We propose to set p > r, and thus the reli-
ability degree can decrease faster than it increases. For
a strange response peer, his initial reliability degree is
set to 0.

Because each search result is ranked according to the
content providers’ reliability degrees, the content items
provided by the deceivers will be placed at the end
of search result. Therefore, by degrading the rank of
the response content items, Sorcery reduces the impact
brought by the deceivers. Besides the demotion-based
punishment, when receiving a search request from the
peer who has the negative reliability degree, the client
should ignore the request.

To spread the impact of punishment, after comput-
ing the reliability degree, the client will broadcast the
new reliability degree to his friends and friends-of-
friends; meanwhile, the reliability degrees computed
by both the client’s friends and friends-of-friends can
also be received by the client. Therefore, the power of
punishment should be expanded in the reliable “social
group”. The study in [12] demonstrated both the relia-
bility and security of the friends-of-friends in the real-
world social networks. Therefore, we can believe the
reliability degrees provided by the patulous friends.

3.4 Practical issues

This section mainly discusses how to address three
important practical issues:

— The client’s friends do not have the overlapping
voting histories with the content providers.

— The friends of client are unreliable or compro-
mised.

— The malicious user who correctly responds the chal-
lenge, but to transfer with bogus content item.



Peer-to-Peer Netw. Appl.

3.4.1 Lack of the overlapping votes

Due to the lack of common interests with the client’s
friends, the content providers possibly do not have the
overlapping votes with the client’s friends. The studies
in [6, 11] indicated that it is a high proportion that most
peers in the system have overlapping votes with the
voters of any content item. Therefore, when the client’s
friends do not have the overlapping votes with the
content providers, Sorcery client seeks for the target
content voters, and ranks these voters. The ranking
score of the client i with respect to the voter j, RS;,
is computed as follows:

RSy = VN;j x RDj 2
where
VN; The total number of the votes of voter j.

The reliability degree of the client i with re-
spect to the voter j.

RD;

According to the order of voters, the client will
challenge some of these voters. As shown in Fig. 3, we
assume that Carol and Dave are the top2 voters of File3
in the Alice’s ranking result, and they do not have the
File3. According to the result of challenging Carol and
Dave, Alice can judge that Carol is a genuine user and

Dave is a deceiver. Thus, Alice may believe the Carol’s
vote on File3, and download File3 from the system;
otherwise, Alice will challenge other voters based on
the order of voters.

Discussion Because the distribution of content in the
actual P2P content sharing systems follows Zipf with
the parameter « = 0.8 [6], the previous measurement
studies in KaZaA [3] reported an interesting fact that it
always be much high probability that the most peers in
system should always have the overlapping votes with
those voters of popular content [6, 19]. Even for the
voters of normal content items, the studies in [10, 11]
also provided the real-world evidence that any peer in
system still has the overlapping votes with these voters
with high probability. Therefore, we believe that the
client’s friends have the overlapping votes with the
target voters, with relatively high probability. In other
words, we can always utilize the overlapping votes
between client’s friends and target content voters to
generate challenge message.

However, it indeed exists the instance that the
client’s friends have no overlapping votes with all the
voters of target content. To address such problem,
Sorcery client should leverage the transitivity of social
network, e.g., the friends-of-friends, to amplify the vot-
ing set which should be used to generate the challenge.

ChallengeMessage

Step 1

(File5,?),(File3,?)

Friend list of Alice

Friendl || Friend2 Alice

ChallengeMessage

. Bob

1] [2]

(File5,-1),(File3,+1)

Bl

[1] [6] | <«

PR

Friend3 || Friend4

o
N A
e

ChallengeMessage

Dave

1] [2][5]

el B

(Fileb, ?),(File8, ?), (File3, ?)

2] [5]

\

sk
:

BE B |

ChallengeMessage

Step 2

(Fileb,+1),(File8,-1),(File3,-1)

File X is good. . File Y is corrupt.

Fig. 3 Challenge-response to the content voters. To simplify the description of instance, the File represents the specific content item,

and we denote the content item X as FileX

@ Springer



Peer-to-Peer Netw. Appl.

Meanwhile, Sorcery can also utilizes the patulous reli-
ability degrees (mentioned in Section 3.3) to help the
client judge the authenticity of target content. Note
that because the study in [12] has demonstrated both
the reliability and security for the friends-of-friends,
we believe that the use of transitive social network is
reasonable. In addition, to bound the harms incurred by
the Sybil attacks during leveraging the transitivity of so-
cial network, we could adopt SybilLimit [35] approach
based on the common insight on social network with
our work. As an alternative, SumUp [16] is also a good
scheme. In our experiments, we also demonstrate that
the expansion of social network indeed makes Sorcery
more robust to the deceivers.

3.4.2 Unreliable friends

In the practical applications, some friends may be on-
line deceivers or compromised. Therefore, Sorcery pro-
poses the similarity between the client i and his friend
[, Simjy), to resist the harms incurred by unreliable
friends. The calculation of the similarity is based on the
cosine technique as follows:

> (ViwVsw)

; keC

Simicp) = = - - 3)
> Vi)™ 22 (Vio)
keC jeC

where

Vi The vote from peer x to the content item y, and

normally the value is +1 or —1. If x has not
voted on the content item Yy, the value is 0.
C The content set of the system.

For two users who have not casted any vote on the
same content items, the similarity between them is set
to 0. The client will compute the similarities of all his
friends intermittently. Once the friend has the similarity
lower than 0.5, the client should not utilize the votes of
the friend to generate the challenge message, since the
study in [11] indicated that the similarity lower than 0.5
represents weak or no correlation between two users.

3.4.3 Incredible interaction

Another serious security vulnerability is that, in the
process of challenge-response, a malicious content
provider may correctly respond the client’s challenge,
but replies with the bogus content item. This threat has
been mentioned in [13] called incredible interaction, and

@ Springer

Sorcery proposes the similar approach with [13], but
based on the social network, to bound the impact of
incredible interaction.

When the client i wants to download the content
item from the provider j, he first examines his own
evaluation history of interaction. If i has interacted with
Jj, he may make decision based on his past experiences;
otherwise, the client i should compute the credibility
with respect to j, Cred;;, as follows:

Credy = Y rer (Simicp) Eval yj) @
| F|

where

F The set comprised of i’s friends and his
friends-of-friends who have evaluated the in-
teraction with the peer j.

Evaly, The evaluation of the interaction from f to j,
and the value is +1 or —1, where +1 denotes
a satisfied interaction and —1 denotes the
bogus one.

Sim;ry  The similarity between the clienti and f.

The credibility is interpreted as an estimate of the au-
thenticity of the content provider. This estimate should
be used to make a decision to accept or reject down-
loading. Due to using the similarity as the weight to
compute the credibility, the evaluations of the mali-
cious friends cannot make harm. After downloading,
the client needs to evaluate this interaction. These
evaluations are shared to his friends and the friends-
of-friends; meanwhile, the client may also obtain the
evaluations shared by his friends and friends-of-friends.

Discussion The threat of incredible interaction is
difficult to avoid by most existing schemes. To the
best of our knowledge, most reputation models, such
as EigenTrust [14] and Credence [10], cannot address
this problem. On the other hand, Sorcery utilizes re-
liable social network to bound this threat, and adding
integrity verification into the overlay network will be
discussed in the following section.

4 Deeper analysis and discussion

In real-world applications, some other types of attacks
can also be mounted against Sorcery, such as MITM at-
tack, Sybil attack [22], DoS attack and content integrity



Peer-to-Peer Netw. Appl.

attack. In this section, we discuss how to resist these
challenges.

4.1 Resisting MITM attack

Generally, an MITM attacker could read, insert
and modify the messages between two sides of the
challenge-response without letting any of them has the
knowledge of compromised transaction between them.
Therefore, both the challenge and response generated
by the two sides may be unauthenticated. To resist such
MITM attack, the peers should dynamically maintain
a trusted group to perform multiple independent ex-
changes originating from the different trusted group
members (similar to the mechanism described in [33]);
then, the peer can execute the Byzantine agreement
protocol [38] to obtain the actual messages.

4.2 Resisting Sybil attack

Another important security vulnerability is the Sybil
attack—a deceiver takes on multiple identities and pre-
tends to be distinct peers [22]. Under Sybil attacks,
the challenge-response mechanism is easy to be com-
promised. Based on the same insight, Sorcery clients
could directly utilize their social networks to limit the
deceptive voting behaviors of Sybil attackers as the ap-
proaches in studies [34, 35]. As an alternative, we could
also adopt the computational puzzle scheme against the
Sybil attack [36, 37].

4.3 Resisting DoS attack

In general, DoS attack is the serious threat where one
or more malicious users attempt to thwart genuine
users from having access to legitimate services. In our
work, the popular content providers may be flooded
by huge amounts of challenge, i.e., Sorcery may suffer
from the DoS attack. The study in [32] indicated that
the ingenious solution against DoS attack is based on
the calculation of puzzle scheme. Therefore, to resist
DoS attack, each Sorcery client may compute moderate
expense, but not intractable puzzles to gain the ad-
mission to challenge those popular content providers.
Furthermore, based on the similar fact that it is difficult
for a user to create arbitrarily many trust links, we
can utilize the Ostra system [45] explored the use of
existing social links to impose a cost on DoS attackers,
thus preventing the adversary from sending excessive
unwanted communication. Recently, some interested
mechanisms, e.g., Not-a-Bot [43] and BotGraph [42],
can also be used to incorporate Sorcery against DoS
attack.

4.4 Protecting the integrity of content items

We have mentioned that the incredible interaction is
a tough problem for the existing security mechanisms
in P2P content sharing systems. If we incorporate Sor-
cery with some integrity verification schemes, we can
make Sorcery more robust to the threat of incredible
interaction. Sorcery can make use of the framework
proposed by Habib et al. [44] to verify content integrity,
and this framework could provide high assurance of
data integrity with low computation and communica-
tion overheads. As an alternative, we could also utilize
the security framework introduced by Chen et al. [31] to
accurately distinguish polluted content items and verify
the integrity of the requested content items. Because
the overheads of the above two integrity verification
frameworks are both low, we believe they can make
Sorcery more robust to the problem of incredible
interaction.

5 Evaluation

This section is organized as follows:

— First, we describe the simulation setup including
network, peer, content and execution models;

— Then, we present the key performance metric of
our evaluation;

— Finally, we evaluate Sorcery as compared with
the Credence [10] with various experimental
configurations.

5.1 Simulation setup

To evaluate the performance of Sorcery, we developed
a P2P content sharing prototype system with all the
mechanisms of Sorcery. Moreover, we generate several
models with different parameters—follow the certain
distributions. Table 1 shows the important parameters
throughout our simulations.

Network model In the following simulations, we
choose Gnutella [1] as the underlying overlay network
of Sorcery. Because our focus is on the dissemination
of the content in the network, we assume the perfect
overlay routing and content discovery. Furthermore,
the transfer time is assumed to be negligible.

Peer model The network is composed of 5,000 peers,
and there are two categories of peers, genuine peers
and deceivers, in our simulation. At the startup, the
genuine peers only publish the good content items,
and correctly vote on the content items; whereas, the

@ Springer



Peer-to-Peer Netw. Appl.

Table 1 Experimental configurations

Parameter Meaning

PC The correctness rate that the genuine peer votes
on the content items.

PD The probability that the deceiver votes on the
content items correctly.

PR The probability that the peer gives response
when he is challenged.

PV The probability that the peer gives votes on the
content items.

FC The total proportion of collusive deceivers.

FD The total proportion of the deceivers.

FN The number of each client’s friends.

deceivers share the corrupt content items, and give the
positive votes on them. Throughout our simulation, two
categories of peers may download content items, leave
and rejoin the system. We generate the social network
of simulation according to small world property of
online social networks [40], and establish the friend-
relationships for the peers based on the widely adopted
Kleinberg model [39].

Content model The study in [6] indicated the existence
of a large number of corrupt versions for the single file
(title) in the actual system. In our simulations, there
are 1,000 unique files (titles), and each of which has
500 different versions containing 50 good versions. At
startup, each genuine peer publishes 30 content items
and each deceiver shares 200 content items. Further-
more, the versions published by a peer are determined
by first selecting a certain title and then its version.
Specifically, both selections follow Zipf distribution
with the parameter &« = 0.8 [6].

Execution model Different queries are initiated at
uniformly distributed peers in the overlay network. An
experimental simulation is composed of 50 simulation
cycles. In each cycle, the selection of 0-5 specific con-
tent items to download is done by first selecting a title
and then choosing a version based on the mechanisms
of Sorcery. After each simulation cycle, the number of
corrupted downloads is calculated. The genuine peers
and deceivers may download good and corrupt content
items; however, the deceivers should give the positive
vote on a corrupt content item and a negative vote on
the good content item. On the other hand, a genuine
peer should give the votes, with the correctness PC,
on the content items in the system. Without the espe-
cially emphasized, we set PC =09, PD =0, PR =1,
PV =1 FC=0,FD =0.2,and FN = 6 as the default
configurations of our simulations. Each experimental
simulation is run 5 times and the results of all runs are
averaged.

@ Springer

5.2 Performance metric

In the following simulations, we characterize the system
performance with the rate of good downloads. 1t is
defined as the rate of downloads that the clients acquire
good content items in one simulation cycle. Specifically,
this metric is computed at the end of each simulation
cycle.

5.3 Experimental results

Recently, most of the defense mechanisms against de-
ceptive voting behaviors deployed in P2P content shar-
ing systems are based on the reputation models. Among
these models, Credence [10] is an ingenious model de-
ployed on a real-world network; moreover, its scenario
is similar to Sorcery. Therefore, we compare the per-
formance of Sorcery with that of Credence throughout
our experiments.

Impact of the probability of peers voting Due to the
feature that both Sorcery and Credence need the votes
from the peers, we compare Sorcery with Credence un-
der the different PVs. As shown in Fig. 4, when the PV
is set to 1.0, the rate of good downloads of both Sorcery
and Credence can increase to higher than 0.7 after 5
and 10 cycles respectively. However, when setting PV
to 0.2, we notice that both the performances of Sor-
cery and Credence are affected by this low probability
of peer voting—the rates of good downloads of two
models are always lower than 0.7 during 50 simulation
cycles. Therefore, we conclude that these two models
strongly depend on the cooperation of peer voting, and
Sorcery can work with the better convergence due to
the reliable votes provided by the clients’ friends. Here,

1.0 :
@ 0.9 B N
g 0s e  onnetea e
g 0.74 & 5000998 ‘ *
o E i | =
g 06— —————————— =-r=-r__ ; e i
8 0.5 P4 e eeens j
S 4l —«— Sorcery (PV=1)
5 041 —<— Sorcery (PV=0.6)
g 03 —— Sorcery (PV=0.2)
T 0.2 % —o— Credence (PV=1)
2 ] —&— Credence (PV=0.6)
=0T —=— Credence (PV=0.2) |

0 10 20 30 40 50

Simulation Cycles

Fig. 4 Impact of the probability of peers voting



Peer-to-Peer Netw. Appl.

1.0 ‘ ‘
0.9 e oRRIReRRK

o7 %f g
0.6 1 7€ J%;@K‘

3:?.—;% /

AMAANANAN

—¥— Sorcery (PR=1)

The Rate of Good Downloads

0.3- -
) Ja# —o— Sorcery (PR=0.75)
0. ] —4— Sorcery (PR=0.5)
0.1
0.0 T T T . .
0 10 20 30 40 50

Simulation Cycles

Fig. 5 Impact of the probability of peers responding

convergence denotes how long the system takes to
reach its maximum performance (The rate of download
to good content).

Impact of the probability of peers responding Figure 5
shows the rate of good downloads of Sorcery under
the conditions that PR is set to 1.0, 0.75 and 0.5 re-
spectively. It is clear that, when PR = 1.0, the rate of
good downloads can quickly converge to 0.8 in only
8 simulation cycles. Even if PR is decreased to only
0.5, Sorcery can still turn the rate of good downloads
to above 0.7 after 20 simulation cycles. This experi-
mental result indicates that, in order to construct the
good download rate of content in the system, the peers
should actively respond each other. Meanwhile, this
result reflects the incentive mechanism of Sorcery—the
more actively users respond, the better performance
they can obtain.

Impact of the correctness of voting In this simulation,
we evaluate the performance of Sorcery compared with
Credence under different correctness rates of the gen-
uine peers’ votes (PC). This experiment is based on
the consideration that, in the real-world applications,
some genuine users cast several incorrect votes on the
content in system by mistake. As the results shown
in Fig. 6, it is clear that, the change of PC makes a
strong influence on both the performances of Sorcery
and Credence. We notice that Sorcery can always work
better than Credence under three different values of
PCs. Therefore, we conclude that Credence is more
vulnerable to PC than Sorcery.

Impact of the normal deceivers The simulation in
Fig. 7 simulates the impact of total proportion of de-
ceivers (F D) on the performances of the simulated two

1.0

—x— Sorcery (PC=0.9)
—=<— Sorcery (PC=0.8)
—+— Sorcery (PC=0.7)
—o— Credence (PC=0.9)
—2— Credence (PC=0.8)

; —=— Credence (PC=0.7)
0.0 . : ; . ; . .
0 10 20 30 40 50

Simulation Cycles

EEBEEEEEEE}EE‘E]

The Rate of Good Downloads

0.1

Fig. 6 Impact of the correctness of voting

models. Throughout the simulations, we assume the
system will not be attacked by P2P worms, so that, the
percentage of deceivers should generally not be higher
than 30%. Interestingly, the result in Fig. 7 shows that
the different FDs do not significantly influence the
performances of Sorcery and Credence. The reason is
that, although the proportion of deceivers is increased,
Sorcery client still utilizes the votes of his own friends
to challenge other peers respectively. Therefore, the
performance of Sorcery cannot be affected by the
proportion of deceivers. For Credence, because peers’
downloads are based on their own judgements of
the content authenticity, Credence clients cannot be
affected along with the increase of deceivers.

Impact of the tricky deceivers 1In Fig. 8, we evaluate
the performances of Sorcery and Credence against the

Sorcery (FD=0.1)
—<— Sorcery (FD=0.2)
—+— Sorcery (FD=0.3)
é —o— Credence (FD=0.1) "

] 7
0.5/
0.4-;?
0.3

The Rate of Good Downloads

0.2 —— Credence (FD=0.2) -
0.1 —=— Credence (FD=0.3)
0.01— : : : :

0 10 20 30 40 50

Simulation Cycles

Fig. 7 Impact of the normal deceivers

@ Springer



Peer-to-Peer Netw. Appl.

1.0 1
2 09 RIRRIGORK
S o8 il
r ]
N o = OSSN
Q o064/
o ]
§ 0.5 S=======c== QIM]
5 0417 —x— Sorcery (PD=1)
% 0.3 T —~— Sorcery (PD=0.5)
'f, 0.2 —é —e— Credence (PD=1)
< 1 —=— Credence (PD=0.5)
= 0.1

0.0 - - T . .

0 10 20 30 40 50

Simulation Cycles

Fig. 8 Impact of the tricky deceivers

tricky deceivers. Tricky deceivers are the malicious
users who can pretend the genuine users by casting
correct votes on some content items, thus deceiving
the normal users. Using this type of attack, the tricky
deceivers may attack some specific content items by
giving opposite votes. Figure 8 indicates that, when
confronted with tricky deceptive voting behavior, Cre-
dence under PD = 0.5 works a worse performance,
which is approximately reduced by 40%, than the Cre-
dence under the condition without tricky deceivers
(PD =1). Sorcery is also influenced by tricky de-
ceivers; however, as shown in Fig. 8, although the per-
formance of Sorcery is influenced by tricky deceivers
when setting PD to 0.5, Sorcery can work better than
Credence.

1.0
0.9
o8 e eores
] WW
- X TR

—x— Sorcery (FC=0.1)
—<— Sorcery (FC=0.2)
.—— Sorcery (FC=0.3)
—eo— Credence (FC=0.1)
0.1 —a— Credence (FC=0.2)
o —=— Credence (FC=0.3)
0.0 - - T T T . .
0 10 20 30 40 50

Simulation Cycles

The Rate of Good Downloads

Fig. 9 Impact of the collusive deceivers

@ Springer

Impact of the collusive deceivers The results shown
in Fig. 9 demonstrate, under the collusive attacks,
Sorcery can work much better than Credence. The
reason is that, for Sorcery, each client generates chal-
lenge messages using the overlapping votes of both
his friends and target voters; therefore, for different
target voters, the challenge messages generated by
the client are different. Moreover, because challenge-
response happens between the client and individual
target voter, the collective deceptive voting behaviors
of collusive deceivers cannot affect the performances
of Sorcery clients badly. From the above two experi-
ments (Impacts of Tricky and Collusive Deceivers), we
deduce that the key reasons that makes Sorcery out-
perform Credence are active challenge-response mech-
anism and the utilization of social network. This result
clearly demonstrates the conclusion in the study [15]—
the social network can make the P2P sharing systems
more robust.

Impact of peer’s friend number The above simulations
have reflected the impact of social network. In this
simulation, we discuss the impact of each peer’s friend
number (F N). Figure 10 shows an interested phenom-
ena. When setting FN to 2, 4, 6 and 8 respectively, the
performance of Sorcery changes a lot. When each peer
only has two friends (FN = 2), the rate of good down-
loads is always lower than 0.4 during 50 simulation cy-
cles; however, as setting F'N to 6, Sorcery can perform
robustly to the good downloads. Interestingly, when we
vary the FN to 8, the enhancement of performance is
not so prominent as the previous experiments (FN is
set to 2, 4 and 6). This result indicates that a Sorcery
client actually does not need to hold a large number of
friends.

1.0 :
§ 0.9 1 W
S 08 ;
s 07]
o ] % ==
a
0.6
T J
S 05]-/-
(5 4
5 0.4 1 ; 3
2 03 ‘ ‘ =8)"
© 14 —— Sorcery (FN=8)
f, 0.248 —— Sorcery (FN=6)-
£ 01l —=— Sorcery (FN=4) |
0.0 —— Sorcery (FN=2)
"o 10 20 30 40 50

Simulation Cycles

Fig. 10 Impact of peer’s friend number



Peer-to-Peer Netw. Appl.

6 Conclusion

This paper presents Sorcery, a novel challenge-
response approach against deceptive voting behaviors
in P2P content sharing systems. Sorcery relies on three
key mechanisms: (1) introducing social network into
current P2P content sharing system; (2) utilizing the
overlapping voting histories of both client’s friends
and the content provider/voter to challenge the lat-
ter actively, thus judging whether the other side is a
deceiver; (3) using punishment mechanism to reduce
the impact brought by deceivers. Our experimental
results illustrate that Sorcery can effectively address the
problem of deceptive voting behaviors in the P2P con-
tent sharing systems, and work better than the existing
reputation models.

References

1. Gnutella. Available at: http://www.guntellaforums.com
. MojoNation. Available at: http://sourceforge.net/projects/
mojonation/
. KaZaA. Available at: http://www.kazaa.com
. eMule. Available at: http://www.emule-project.net
. BitTorrent. Available at: http://www.bittorrent.com
. Liang J, Kumar R, Xi Y, Ross KW (2005) Pollution in P2P
file sharing systems. In: Proceedings of IEEE INFOCOM.
Miami, FL, USA, March 2005
7. Curtis N, Safavi-Naini R, Susilo W (2004) X?>Rep: enhanced
trust semantics for the Xrep protocol. In: Proceedings of
ACNS, pp 205-219
8. Damiani E, De Capitani di Vimercati S, Paraboschi S,
Samarati P, Violante F (2002) A reputation-based approach
for choosing reliable resources in Peer-To-Peer networks. In:
Proceedings of ACM conference on computer and communi-
cations security (CCS’02), pp 207-216
9. Costa CP, Soares V, Almeida JM, Almeida V (2007) Fighting
pollution dissemination in Peer-To-Peer networks. In: Pro-
ceedings of ACM SAC, Seoul, Korea, pp 1586-1590
10. Walsh K, Giin Sirer E (2006) Experience with an object repu-
tation system for Peer-to-Peer filesharing. In: Proceedings of
NSDI, May 2006, pp 1-1
11. Walsh K, Giin Sirer E (2005) Fighting Peer-to-Peer SPAM
and decoys with object reputation. In: Proceedings of work-
shop of the economics of Peer-to-Peer systems, August 2005,
pp 138-143
12. Garriss S, Kaminsky M, Freedman MJ, Karp B, Mazieres D,
Yu H (2006) RE: reliable email. In: Proceedings of NSDI San
Jose, California, USA, 8-10 May 2006
13. Xiong L, Liu L (2004) PeerTrust: supporting reputation-
based trust for Peer-to-Peer electronic communities. In:
IEEE transaction on knowledge and data engineering
Knowledge and Data Engineering, IEEE Transactions on,
vol. 16, no. 7, pp 843-857
14. Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The
eigentrust algorithm for reputation management in P2P net-
works. In: Proceedings of WWW Budapest, Hungary, pp 640—
651
15. Pouwelse J, Garbacki P, Wang J, Bakker A, Yang J, losup A,
Epema D, Reinders M, van Steen M, Sips H (2006) Tribler:

[\S}

NN AW

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

a social-based Peer-to-Peer system. In: Proceedings of IPTPS
Santa Barbara, CA. February 2006

Tran N, Min B, Li J, Subramanian L (2009) Sybil-resilient
online content voting. In: Proceedings of NSDI, pp 15-28
Fudenberg D, Tirole J (1991) Game theory. MIT Press,
Cambridge, MA

Osborne M, Rubinstein A (1994) A course in game theory.
MIT Press, Cambridge, MA

Saroiu S, Gummadi P, Gribble S (2002) A measurement
study of Peer-to-Peer file sharing systems. In: Proceedings of
MMCN, San Jose, CA

Gummadi K, Dunn R, Saroiu S, Gribble S, Levy H, Zahorjan
J (2003) Measurement, modeling, and analysis of a Peer-to-
Peer file-sharing workload. In: Proceedings of ACM SOSP.
In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pp 314-329

Resnick P, Kuwabara K, Zeckhauser R, Friedman E (2000)
Reputation systems. In: Proceedings of communications of
the ACM 43(12):45-48

Douceur JR (2002) The sybil attack. In: Proceedings of
IPTPS, Cambridge, MA. pp 251-260

Zhang H, Goel A, Govindan R, Mason K, Roy BV (2004)
Making eigenvector-based reputation systems robust to col-
lusion. In: Proceedings of workshop on algorithms and mod-
els for the web-graph. pp 92-104

Thommes R, Coates M (2005) Epidemiological models of
Peer-to-Peer viruses and pollution. In: Proceedings of tech-
nical report. McGill University

Vishnumurthy V, Chandrakumar S, Sirer EG (2003)
KARMA: a secure economic framework for P2P resource
sharing. In: Proceedings of workshop on the economics of
Peer-to-Peer systems (IPTPS’03), Berkeley, CA

Yang B, Garcia-Molina H (2003) PPay: micropayments for
Peer-to-Peer systems. In: Proceedings of ACM conference
on computers and communications security (CCS’03), 27-30
October, 2003, Washington DC

Cornelli F, Damiani E, di Vimercati SDC, Paraboschi S,
Samarati P (2002) Choosing reputable servents in a P2P net-
work. In: Proceedings of WWW, Honolulu, Hawaii, USA,
pp 376-386

Gauthier P, Bershad B, Gribble SD (2004) Dealing with
cheaters in anonymous Peer-to-Peer networks. In: Proceed-
ings of technical report of University of Washington

Liang J, Naoumov N, Ross KW (2005) Efficient blacklisting
and pollution-level estimation in P2P file-sharing systems. In:
Proceedings of AINTEC

Costa CP, Almeida JM (2007) Reputation systems for
fighting pollution in peer-to-peer file sharing systems. In: Pro-
ceedings of peer-to-peer computing (P2P’07), pp 53-60
Chen R, Lua EK, Crowcroft J, Guo W, Tang L, Chen Z
(2008) Securing peer-to-peer content sharing service from
poisoning attacks. In: Proceedings of peer-to-peer computing
(P2P’08), pp 22-29

Parno B, Wendlandt D, Shi E, Perrig A, Maggs BM, Hu
Y-C (2007) Portcullis: protecting connection setup from
denial-of-capability attacks. In: Proceedings of SIGCOMM,
August 2007

Chen R, Guo W, Tang L, Hu J, Chen Z (2008) Scalable
byzantine fault tolerant public key authentication for Peer-
to-Peer networks. In: Proceedings of Euro-Par, Las Palmas
de Gran Canaria, Spain, pp 601-610

Yu H, Kaminsky M, Gibbons PB, Flaxman A (2006) Sybil-
guard: defending against sybil attacks via social networks. In:
Proceedings of SIGCOMM, Pisa, Italy, September 2006

Yu H, Gibbons PB, Kaminsky M, Xiao F (2008) SybilLimit:
A near-optimal social network defense against sybil attacks.

@ Springer


http://www.guntellaforums.com
http://sourceforge.net/projects/mojonation/
http://sourceforge.net/projects/mojonation/
http://www.kazaa.com
http://www.emule-project.net
http://www.bittorrent.com

Peer-to-Peer Netw. Appl.

In: Proceedings of IEEE symposium on security and privacy
(S&P’08), pp 3-17

36. Borisov N (2006) Computational puzzles as sybil defenses. In:
Proceedings of peer-to-peer computing (P2P’06), pp 171-176

37. Rowaihy H, Enck W, McDaniel P, La Porta T (2007) Limiting
sybil attacks in structured P2P networks. In: Proceedings of
INFOCOM, 6-12 May 2007

38. Lamport L, Shostak RE, Pease MC (1982) The Byzantine
generals problem. In: ACM transactions on programming
languages and systems, pp 382-401

39. Kleinberg JM (2000) The small-world phenomenon: an algo-
rithm perspective. In: Proceedings of STOC, pp 163-170

40. Mislove A, Marcon M, Gummadi PK, Druschel P,
Bhattacharjee B (2007) Measurement and analysis of online
social networks. In: Proceedings of internet measurement
conference (IMC’07), San Dirgo, CA

41. Dumitriu D, Knightly EW, Kuzmanovic A, Stoica I,
Zwaenepoel W (2005) Denial-of-service resilience in Peer-to-
Peer file sharing systems. In: Proceedings of SIGMETRICS,
pp 38-49

42. Zhao Y, Xie Y, Yu F,Ke Q, Yu Y, Chen Y, Gillum E (2009)
BotGraph: large scale spamming botnet detection. In: Pro-
ceedings of NSDI, pp 321-334

43. Gummadi R, Balakrishnan H, Maniatis P, Ratnasamy S
(2009) Not-a-Bot: improving service availability in the face
of botnet attacks. In: Proceedings of NSDI. Boston, MA

44. Habib A, Xu D, Atallah M, Bhargava B, Chuang J (2005)
Veritying data integrity in peer-to-peer media streaming. In:
Proceedings of MMCN, pp 1-12

45. Mislove A, Post A, Druschel P, Gummadi PK (2008) Ostra:
leveraging trust to thwart unwanted communication. In: Pro-
ceedings of NSDI. San Francisco, CA

Ennan Zhai received the B.E. degree from Northeastern Uni-
versity, China, in 2007. He is currently a master student in
the School of Software and Microelectronics, Peking Univer-
sity, China. His research interests mainly lie in distributed
systems, social network-based systems and security operating
systems. More information about his research is available at
http://infosec.pku.edu.cn/~zhaien/.

@ Springer

Huiping Sun is an assistant professor in the School of Software
and Microelectronics, Peking University, China. His research
interests mainly lie in identity and trust management, RFID
security and privacy, Social network and P2P Security.

LY

Sihan Qing currently a professor of Peking University and the
director of information security department of the School of
Software and Microelectronics, Peking University. His research
interests include cryptology, network and information security,
Trusted Computing and security computer systems.

Zhong Chen received the Ph.D degree from Peking University,
China. He is currently a professor of Peking University, the
dean of the School of Software and Microelectronics at Peking
University and the director of Key Laboratory of Network and
Software Security Assurance at Peking University. His research
interests include network and information security as well as
software engineer.


http://infosec.pku.edu.cn/~zhaien/

	Sorcery: Overcoming deceptive votes in P2P content sharing systems
	Abstract
	Introduction
	Related work
	Sorcery
	Social network
	Challenge-response mechanism
	Punishment mechanism for deceivers
	Practical issues
	Lack of the overlapping votes
	Unreliable friends
	Incredible interaction


	Deeper analysis and discussion
	Resisting MITM attack
	Resisting Sybil attack
	Resisting DoS attack
	Protecting the integrity of content items

	Evaluation
	Simulation setup
	Performance metric
	Experimental results

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


